Univariate Spline Quasi - Interpolants and Applications to Numerical Analysis
نویسنده
چکیده
We describe some new univariate spline quasi-interpolants on uniform partitions of bounded intervals. Then we give some applications to numerical analysis: integration, differentiation and approximation of zeros.
منابع مشابه
Numerical integration using spline quasi-interpolants
In this paper, quadratic rules for obtaining approximate solution of definite integrals as well as single and double integrals using spline quasi-interpolants will be illustrated. The method is applied to a few test examples to illustrate the accuracy and the implementation of the method.
متن کاملQuadratic spline quasi-interpolants and collocation methods
Univariate and multivariate quadratic spline quasi-interpolants provide interesting approximation formulas for derivatives of approximated functions that can be very accurate at some points thanks to the superconvergence properties of these operators. Moreover, they also give rise to good global approximations of derivatives on the whole domain of definition. From these results, some collocatio...
متن کاملQuadratic spline quasi-interpolants on Powell-Sabin partitions
In this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented.
متن کاملMultidimensional Lobachevsky Spline Integration on Scattered Data
This paper deals with the topic of numerical integration on scattered data in Rd , d ≤ 10, by a class of spline functions, called Lobachevsky splines. Precisely, we propose new integration formulas based on Lobachevsky spline interpolants, which take advantage of being expressible in the multivariate setting as a product of univariate integrals. Theoretically, Lobachevsky spline integration for...
متن کاملQuadratic Spline Quasi - Interpolants on Bounded Domains
We study some C1 quadratic spline quasi-interpolants on bounded domains ⊂ Rd, d = 1, 2, 3. These operators are of the form Q f (x) = ∑ k∈K () μk( f )Bk(x), where K () is the set of indices of B-splines Bk whose support is included in the domain and μk( f ) is a discrete linear functional based on values of f in a neighbourhood of xk ∈ supp(Bk). The data points x j are vertices of a unifor...
متن کامل